Abstract
Many problems in Stokes flow (and linear elasticity) require the evaluation of vector fields defined in terms of sums involving large numbers of fundamental solutions. In the fluid mechanics setting, these are typically the Stokeslet (the kernel of the single layer potential) or the Stresslet (the kernel of the double layer potential). In this paper, we present a simple and efficient method for the rapid evaluation of such fields, using a decomposition into a small number of Coulombic N-body problems, following an approach similar to that of Fu and Rodin [Y. Fu, G.J. Rodin, Fast solution methods for three-dimensional Stokesian many-particle problems, Commun. Numer. Meth. En. 16 (2000) 145–149]. While any fast summation algorithm for Coulombic interactions can be employed, we present numerical results from a scheme based on the most modern version of the fast multipole method [H. Cheng, L. Greengard, V. Rokhlin, A fast adaptive multipole algorithm in three dimensions, J. Comput. Phys. 155 (1999) 468–498]. This approach should be of value in both the solution of boundary integral equations and multiparticle dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.