Abstract
We propose a mesh refinement technique for solving elliptic difference equations on unbounded domains based on the fast lattice Green's function (FLGF) method. The FLGF method exploits the regularity of the Cartesian mesh and uses the fast multipole method in conjunction with fast Fourier transforms to yield linear complexity and decrease time-to-solution. We extend this method to a multi-resolution scheme and allow for locally refined Cartesian blocks embedded in the computational domain. Appropriately chosen interpolation and regularization operators retain consistency between the discrete Laplace operator and its inverse on the unbounded domain. Second-order accuracy and linear complexity are maintained, while significantly reducing the number of degrees of freedom and hence the computational cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.