Abstract

A fast modular numerical method for solving general moving interface problems is presented. It simplifies code development by providing a black-box solver which moves a given interface one step with given normal velocity. The method combines an efficiently redistanced level set approach, a problem-independent velocity extension, and a second-order semi-Lagrangian time stepping scheme which reduces numerical error by exact evaluation of the signed distance function. Adaptive quadtree meshes are used to concentrate computational effort on the interface, so the method moves an N-element interface in O(N log N) work per time step. Efficiency is increased by taking large time steps even for parabolic curvature flows. Numerical results show that the method computes accurate viscosity solutions to a wide variety of difficult geometric moving interface problems involving merging, anisotropy, faceting, nonlocality, and curvature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.