Abstract

PurposeBone marrow is found either as red bone marrow, which mainly contains haematopoietic cells, or yellow bone marrow, which mainly contains adipocytes. In adults, red bone marrow is principally located in the axial skeleton. A recent study has introduced a method to simultaneously estimate the fat fraction (FF), the T1 and T2* relaxation times of water (T1w, T2*w) and fat (T1f and T2*f) in the vertebral bone marrow. The aim of the current study was to measure FF, T1w, T1f, T2*w and T2*f in five sites of bone marrow, and to assess the presence of regional variations. MethodsMRI experiments were performed at 1.5T on five healthy volunteers (31.6±15.6years) using a prototype chemical-shift-encoded 3D multi-gradient-echo sequence (VIBE) acquired with two flip angles. Acquisitions were performed in the shoulders, lumbar spine and pelvis, with acquisition times of <25seconds per sequence. Signal intensities of magnitude images of the individual echoes were used to fit the signal and compute FF, T1w, T1f, T2*w and T2*f in the humerus, sternum, vertebra, ilium and femur. ResultsRegional variations of fat fraction and relaxation times were observed in these sites, with higher fat fraction and longer T1w in the epiphyses of long bones. A high correlation between FF and T1w was measured in these bones (R=0.84 in the humerus and R=0.84 in the femur). In most sites, there was a significant difference between water and fat relaxation times, attesting the relevance of measuring these parameters separately. ConclusionThe method proposed in the current study allowed for measurements of FF, T1w, T1f, T2*w and T2*f in five sites of bone marrow. Regional variations of these parameters were observed and a strong negative correlation between the T1 of water and the fat fraction in bones with high fat fractions was found.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.