Abstract

The soft additive segmentation model attempts to solve the problem related to the segmentation of overlapping objects with additive intensity value. An issue in optimizing the soft additive segmentation functional is that a high-order nonlinear partial differential equation needs to be solved, which, for most standard algorithms, involves high computational cost. In this paper, we propose a fast and efficient numerical algorithm to optimize the soft additive segmentation model. We reformulate the original minimization problem into a sequence of simpler minimization problems that can be solved efficiently by using the augmented Lagrangian method. Numerical tests on real and synthetic cases are presented to demonstrate the efficiency of our algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.