Abstract

This paper illustrates the development of a recursive QR technique for the analysis of transient events, such as disruptions or scenario evolution, in fusion devices with three-dimensional conducting structures using an integral eddy current formulation. An integral formulation involves the solution, at each time step, of a large full linear system. For this reason, a direct solution is impractical in terms of time and memory consumption. Moreover, typical fusion devices show a symmetric/periodic structure. This can be properly exploited when the plasma and other sources possess the same symmetry/periodicity of the structure. Indeed, in this case, the computation can be reduced to only a single sector of the overall structure. In this work the periodicity and the symmetries are merged in the recursive QR technique, exhibiting a huge decrease in the computational cost. Finally, the proposed technique is applied to a realistic large-scale problem related to the International Thermonuclear Experimental Reactor (ITER).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.