Abstract
<abstract> <p>In recent years, a truncated nuclear norm regularization (TNNR) method has obtained much attention from researchers in machine learning and image processing areas, because it is much more accurate on matrices with missing data than other traditional methods based on nuclear norm. However, the TNNR method is reported to be very slow, due to its large number of singular value decomposition (SVD) iterations. In this paper, a truncated $ {\boldsymbol{L}}_\bf{2, 1} $ norm minimization method was presented for fast and accurate matrix completion, which is abbreviated as TLNM. In the proposed TLNM method, the truncated nuclear norm minimization model of TNNR was improved to a truncated $ {\boldsymbol{L}}_\bf{2, 1} $ norm minimization model that aimed to optimize the truncated $ {\boldsymbol{L}}_\bf{2, 1} $ Norm and a weighted noisy matrix simultaneously for improving the accuracy of TLNM. Using Qatar Riyal (QR) decomposition to calculate the orthogonal bases for reconstructing recovery results, the proposed TLNM method is much faster than the TNNR method. Adequate results for color images validate the effectiveness and efficiency of TLNM comparing with TNNR and other competing methods.</p> </abstract>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.