Abstract

The main focus of this paper is to introduce a computationally efficient algorithm for solving image recovery problems, regularized by the recently introduced higher degree total variation (HDTV) penalties. The anisotropic HDTV penalty is the fully separable L1 semi-norm of the directional image derivatives; the use of this penalty is seen to considerably improve image quality in biomedical inverse problems. We introduce a novel majorize minimize algorithm to solve the HDTV optimization problem, thus considerably speeding it over the previous implementation. Specifically, comparisons with previous iterative reweighted algorithm show an approximate ten fold speedup. The new algorithm enables us to obtain reconstructions that are free of patchy artifacts exhibited by classical TV schemes, while being comparable to state of the art total variation regularization schemes in run time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.