Abstract

This paper discusses sparse matrix kernels of simplex-based linear programming software. State-of-the-art implementations of the simplex method maintain an LU factorization of the basis matrix which is updated at each iteration. The LU factorization is used to solve two sparse sets of linear equations at each iteration. We present new implementation techniques for a modified Forrest-Tomlin LU update which reduce the time complexity of the update and the solution of the associated sparse linear systems. We present numerical results on Netlib and other real-life LP models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.