Abstract
In this paper, we present an interesting filtering algorithm to perform accurate estimation in jump Markov nonlinear systems, in case of multi-target tracking. With this paper, we aim to contribute in solving the problem of model-based body motion estimation by using data coming from visual sensors. The Interacting Multiple Model (IMM) algorithm is specially designed to track accurately targets whose state and/or measurement (assumed to be linear) models changes during motion transition. However, when these models are nonlinear, the IMM algorithm must be modified in order to guarantee an accurate track. In order to deal with this problem, the IMM algorithm was combined with the Unscented Kalman Filter (UKF) [6]. Even if the later algorithm proved its efficacy in nonlinear model case; it presents a serious drawback in case of non Gaussian noise. To deal with this problem we propose to substitute the UKF with the Particle Filter (PF). To overcome the problem of data association, we propose the use of an accelerated JPDA approach based on the depth first search (DFS) technique [12]. The derived algorithm from the combination of the IMM-PF algorithm and the DFS-JPDA approach is noted DFS-JPDA-IMM-PF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.