Abstract

In this work, an interface circuit applied to resistive gas or chemical sensors is proposed. The interface circuit includes a detection front-end, a single-end to differential circuit, a successive approximation analog-to-digital converter (SAR ADC), and some reference auxiliary circuits. In detection front-end circuits, mirrored currents in a current mirror usually differ by several orders of magnitude. In order to ensure that the current mirror can be copied accurately, this work uses a negative feedback structure consisting of an operational amplifier and an NMOS tube to ensure that the VDS of the current mirroring tube remains consistent. Simulation results show that the replication error of the current mirror is 0.015%. The proposed interface circuit has a detection range of 10 Ω to 1 GΩ with a relative error of 0.55%. The current multiplication or divided technique allows the interface circuit to have a high sampling frequency of up to 10 kHz. The proposed circuit is based on a 180 nm CMOS process with a chip area of 0.308 mm2 (723 μm ∗ 426 μm). The power consumption of the whole interface circuit is 3.66 mW when the power supply voltage is 1.8 V.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.