Abstract
In this paper, a fast image encryption algorithm is proposed, in which the shuffling and diffusion is performed simultaneously. The cipher-text image is divided into blocks and each block has k ×k pixels, while the pixels of the plain-text are scanned one by one. Four logistic maps are used to generate the encryption key stream and the new place in the cipher image of plain image pixels, including the row and column of the block which the pixel belongs to and the place where the pixel would be placed in the block. After encrypting each pixel, the initial conditions of logistic maps would be changed according to the encrypted pixel's value; after encrypting each row of plain image, the initial condition would also be changed by the skew tent map. At last, it is illustrated that this algorithm has a faster speed, big key space, and better properties in withstanding differential attacks, statistical analysis, known plaintext, and chosen plaintext attacks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.