Abstract

We propose a numerically efficient algorithm for simulating the multi-color optical self-focusing phenomena in nematic liquid crystals. The propagation of the nematicon is modeled by a parabolic wave equation coupled with a nonlinear elliptic partial differential equation governing the angle between the crystal and the direction of propagation. Numerically, the paraxial parabolic wave equation is solved by a fast Huygens sweeping method, while the nonlinear elliptic PDE is handled by the alternating direction explicit (ADE) method. The overall algorithm is shown to be numerically efficient for computing high frequency beam propagations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call