Abstract

A new oligothiophene functionalized Schiff base sensor 3TDC has been successfully designed and synthesized. Sensor 3TDC exhibited "naked-eye" colorimetric and selective "on-off" fluorescence response toward Cu2+ with high selectivity and sensitivity within a wide pH range. The binding ratio of the sensor 3TDC and Cu2+ was determined to be 1:1 through fluorescence titration, Job's plot, 1H NMR titration, FTIR and DFT studies. The detection limit is calculated to be as low as 2.81 × 10-8 M, which is much lower than the allowable level of Cu2+ in drinking water set by U.S. Environmental Protection Agency (~20 μM) and the World Health Organization (~30 μM). The binding constant (Ka) of Cu2+ to sensor 3TDC was found to be 2.52 × 104 M-1. Sensor 3TDC for Cu2+ detection exhibited fast fluorescence response within 30 s and high anti-interference performance. Moreover, sensor 3TDC could be used as an effective fluorescent sensor for detecting Cu2+ ions in various real water and food samples with good accuracy and high precision.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.