Abstract

High-utility itemset mining is a prominent data-mining technique where the profit or weight of itemsets plays a crucial role in defining meaningful patterns. High average-utility itemset (HAUI) mining is an advancement over high-utility itemset mining, which introduces an unbiased measure called average utility to associate the utility of itemsets with their length. Several existing HAUI mining algorithms use various upper bounds such as average-utility upper bound, revised tighter upper bound, and looser upper bound to preserve pruning methods. However, these upper bounds overestimate the average-utility of itemsets and slow down the mining process. This paper presents a fast high average-utility itemset miner (FHAIM) algorithm, which uses two improved upper bounds and several efficient pruning strategies to avoid the processing of unpromising candidate itemsets. Moreover, a novel list structure named recommended average-utility list (RAUL) is presented to store the average-utility and the required information for pruning. The RAUL for an itemset can be constructed by joining the RAULs of its subsets to avoid excessive database scans. We have performed substantial experiments on various benchmark datasets to evaluate the performance of the FHAIM in comparison with two existing HAUI mining algorithms. Experimental results show that FHAIM outperforms the existing HAUI mining algorithms in terms of runtime, memory usage, join counts, and scalability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.