Abstract
In this paper, we describe an unstructured mesh volume renderer. Our renderer is interactive and accurately integrates light intensity an order of magnitude taster than previous methods. We employ a projective technique that takes advantage of the expanded programmability of the latest 3D graphics hardware. We also analyze an optical model commonly used for scientific volume rendering and derive a new method to compute it that is very accurate but computationally feasible in real time. We demonstrate a system that can accurately produce a volume rendering of an unstructured mesh with a first-order approximation to any classification method. Furthermore, our system is capable of rendering over 300 thousand tetrahedra per second yet is independent of the classification scheme used.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.