Abstract

Rough set theory has shown success in being a filter-based feature selection approach for analyzing information systems. One of its main aims is to search for a feature subset called a reduct, which preserves the classification ability of the original system. In this paper, we consider ordered decision systems, where the preference order, a fundamental concept in dominance-based rough set approach, plays a critical role. In recent literature, based on the greedy hill climbing method, many heuristic attribute reduction algorithms are proposed by utilizing significance measures of attributes, and they are extended to deal with ordered decision systems. Unfortunately, they are often time-consuming, especially when applied to deal with large scale data sets with high dimensions. To reduce the complexity, a novel accelerator is introduced in heuristic algorithms from the perspectives of objects and criteria. Based on the new accelerator, the number of objects and the dimension of criteria are lessened thus making the accelerated algorithms faster than their original counterparts while maintaining the same reducts. Experimental analysis shows the validity and efficiency of the proposed methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.