Abstract

We present a fully four-dimensional, globally convergent, incremental gradient algorithm to estimate the continuous-time tracer density from list mode positron emission tomography (PET) data. The rate function in each voxel is modeled as an inhomogeneous Poisson process whose rate function can be reconstructed using a cubic B-spline basis. The rate functions are then estimated by maximizing the objective function formed by the sum of the likelihood of arrival times and spatial and temporal smoothness penalties. We first provide a computable bound for the norms of the optimal temporal basis function coefficients, and based on this bound we construct an incremental gradient algorithm that converges to the solution. Fully four-dimensional simulations demonstrate the convergence of the algorithm for a high count dataset on a 4-ring scanner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.