Abstract

The multiple-input/output inverse theorem (MINT) algorithm for multichannel equalization is computationally demanding. Although adaptive MINT reduces the computational complexity, it suffers from slow convergence. In this letter, we propose a low-complexity fast-converging adaptive algorithm for multichannel equalization. The novelty of the approach lies in the adaptive equalization for each frequency bin and its ability to achieve fast convergence in a single step. The proposed algorithm can achieve better equalization of high-order acoustic impulse responses with significant reduction in complexity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call