Abstract

A boundary integral equation in general form will be considered, which can be used to solve Dirichlet problems for the Helmholtz equation. The goal of this paper is to develop a fast Fourier-Galerkin method solving these boundary integral equations. To this aim, a scheme for splitting integral operators is presented, which splits the corresponding integral operator into a convolution operator and a compact operator. A truncation strategy is presented, which can compress the dense coefficient matrix to a sparse one having only $\mathcal {O}(n)$ nonzero entries, where n is the order of the Fourier basis functions used in the method. The proposed fast method preserves the stability and optimal convergence order. Moreover, exponential convergence can be obtained under suitable assumptions. Numerical examples are presented to confirm the theoretical results for the approximation accuracy and computational complexity of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.