Abstract
Complexity pursuit is a recently developed algorithm using the gradient descent for separating interesting components from time series. It is an extension of projection pursuit to time series data and the method is closely related to blind separation of time-dependent source signals and independent component analysis (ICA). In this paper, a fixed-point algorithm for complexity pursuit is introduced. The fixed-point algorithm inherits the advantages of the well-known FastICA algorithm in ICA, which is very simple, converges fast, and does not need choose any learning step sizes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.