Abstract

With the penetration of distributed resources into power distribution networks, power distribution networks are transforming into active distribution networks with a high proportion of distributed generations and power electronic equipment. Efficient modeling and simulation methods are essential to perform dynamic response analysis. In order to satisfy the fast/steady/slow multiple time-scale simulation requirements of active distribution networks, a fast/medium/slow time partition model and a network decoupling method for short line characteristic lines is proposed in this paper. Through the decomposition coordination simulation method, the network is decomposed into multiple regions that can be simulated in parallel. Based on the interconnection of fiber optic network cards, a multi-rate parallel simulation and synchronization strategy is proposed, which significantly improves the simulation speed of active distribution networks while ensuring simulation accuracy. The numerical experiments have been conducted based on a modified IEEE 33-bus and a PG&E 69-bus, and simulation results show the feasibility of the proposed method. The verification results of the example show that using adaptive variable-step-size multi-rate parallel simulation technology can increase the subnet computation-time balance rate and simulation acceleration ratio to 119.90% and 121.31% in the same rate-parallel mode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call