Abstract

An adaptive, digital, baseband predistortion (PD) algorithm that compensates for the memoryless nonlinearities of radio-frequency (RF) power amplifiers (PAs) for wireless systems using non-constant-envelop modulation schemes is presented. Compared with the conventional, complex-gain predistorters based on lookup tables (LUTs), the proposed direct-learning, multilevel lookup table (ML-LUT) approach assisted by a hardware-efficient loop delay compensation scheme achieves a significant reduction in convergence time and an improvement in linearization accuracy in the presence of an unknown loopback delay. The experimental results in an FPGA prototyping platform show that the fast adaptation speed enables the predistorter to track time-varying PA nonlinearities as fast as in the tens of kilohertz range, constituting a potential solution for highly efficient PAs in mobile handsets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.