Abstract

Density based clustering methods are proposed for clustering spatial databases with noise. Density Based Spatial Clustering of Applications with Noise (DBSCAN) can discover clusters of arbitrary shape and also handles outliers effectively. DBSCAN obtains clusters by finding the number of points within the specified distance from a given point. It involves computing distances from given point to all other points in the dataset. The conventional index based methods construct a hierarchical structure over the dataset to speed-up the neighbor search operations. The hierarchical index-structures fail to scale for datasets of dimensionality above 20. In this paper, we propose a novel graph-based index structure method Groups that accelerates the neighbor search operations and also scalable for high dimensional datasets. Experimental results show that the proposed method improves the speed of DBSCAN by a factor of about 1.5–2.2 on benchmark datasets. The performance of DBSCAN degrades considerably with noise due to unnecessary distance computations introduced by noise points while the proposed method is robust to noise by pruning out noise points early and eliminating the unnecessary distance computations. The cluster results produced by our method are exactly similar to that of DBSCAN but executed at a much faster pace.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.