Abstract

This paper presents a fast concurrent binary search tree algorithm. To achieve high performance under contention, the algorithm divides update operations within an eager abstract access that returns rapidly for efficiency reason and a lazy structural adaptation that may be postponed to diminish contention. To achieve high performance under read-only workloads, it features a rebalancing mechanism and guarantees that read-only operations searching for an element execute lock-free. We evaluate the contention-friendly binary search tree using Synchrobench, a benchmark suite to compare synchronization techniques. More specifically, we compare its performance against five state-of-the-art binary search trees that use locks, transactions or compare-and-swap for synchronization on Intel Xeon, AMD Opteron and Oracle SPARC. Our results show that our tree is more efficient than other trees and double the throughput of existing lock-based trees under high contention.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call