Abstract

In this paper, we present a computation technique for the direct numerical simulation of freely moving rigid bodies in fluids. We solve three-dimensional laminar flow problems using a control volume approach. The key feature of this approach is that the computational overhead (relative to a pure fluid solver) to solve for the motion of rigid particle is very small. The formulation is convenient for handling irregular geometries. We present results for the sedimentation of particles of different shapes. Convergence tests are presented to assess the order of accuracy of the numerical scheme. Various test cases are considered and the numerical results are compared with experimental values to validate the code. Due to the ability to perform fast computations, this method has been used for animations and its application to the direct numerical simulation of turbulent particulate flows merits investigation. The technique is not restricted to any constitutive model of the suspending fluid. Hence, it may potentially be used in Large Eddy Simulations (LES) or Reynolds Averaged Navier–Stokes (RANS) type simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.