Abstract
A multiscale collocation method is developed for solving the eigen-problem of weakly singular integral operators. We employ a matrix truncation strategy of Chen, Micchelli and Xu to compress the collocation matrix, which the compressed matrix has only $\mathcal{O}(N\log N)$ nonzero entries, where N denotes the order of the matrix. This truncation leads to a fast collocation method for solving the eigen-problem. We prove that the fast collocation method has the optimal convergence order for approximation of the eigenvalues and eigenvectors. The power iteration method is used for solving the corresponding discrete eigen-problem. We present a numerical example to demonstrate how the methods can be used to compute a nonzero eigenvalue rapidly and efficiently.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.