Abstract

As a result of the recent developments of high-throughput screening in drug discovery, the number of available screening compounds has been growing rapidly. Chemical vendors provide millions of compounds; however, these compounds are highly redundant. Clustering analysis, a technique that groups similar compounds into families, can be used to analyze such redundancy. Many available clustering methods focus on accurate classification of compounds; they are slow and are not suitable for very large compound libraries. Here is described a fast clustering method based on an incremental clustering algorithm and the 2D fingerprints of compounds. This method can cluster a very large data set with millions of compounds in hours on a single computer. A program implemented with this method, called cd-hit-fp, is available from http://chemspace.org.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.