Abstract

Developing fast-charging, high-temperature, and sustainable batteries is critical for the large-scale deployment of energy storage devices in electric vehicles, grid-scale electrical energy storage, and high temperature regions. Here, a transition metal-free all-organic rechargeable potassium battery (RPB) based on abundant and sustainable organic electrode materials (OEMs) and potassium resources for fast-charging and high-temperature applications is demonstrated. N-doped graphene and a 2.8mpotassium hexafluorophosphate (KPF6 ) in diethylene glycol dimethyl ether (DEGDME) electrolyte are employed to mitigate the dissolution of OEMs, enhance the electrode conductivity, accommodate large volume change, and form stable solid electrolyte interphase in the all-organic RPB. At room temperature, the RPB delivers a high specific capacity of 188.1 mAh g-1 at 50mA g-1 and superior cycle life of 6000 and 50000 cycles at 1 and 5 A g-1 , respectively, demonstrating an ultra-stable and fast-charging all-organic battery. The impressive performance at room temperature is extended to high temperatures, where the high-mass-loading (6.5mg cm-2 ) all-organic RPB exhibits high-rate capability up to 2 A g-1 and a long lifetime of 500 cycles at 70-100°C, demonstrating a superb fast-charging and high-temperature battery. The cell configuration demonstrated in this work shows great promise for practical applications of sustainable batteries at extreme conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call