Abstract

We present a butterfly-compressed representation of the Hadamard–Babich (HB) ansatz for the Green’s function of the high-frequency Helmholtz equation in smooth inhomogeneous media. For a computational domain discretized with discretization cells, the proposed algorithm first solves and tabulates the phase and HB coefficients via eikonal and transport equations with observation points and point sources located at the Chebyshev nodes using a set of much coarser computation grids, and then butterfly compresses the resulting HB interactions from all cell centers to each other. The overall CPU time and memory requirement scale as for any bounded two-dimensional (2D) domains with arbitrary excitation sources. A direct extension of this scheme to bounded 3D domains yields an CPU complexity, which can be further reduced to quasi-linear complexities with proposed remedies. The scheme can also efficiently handle scattering problems involving inclusions in inhomogeneous media. Although the current construction of our HB integrator does not accommodate caustics, the resulting HB integrator itself can be applied to certain sources, such as concave-shaped sources, to produce caustic effects. Compared to finite-difference frequency domain methods, the proposed HB integrator is free of numerical dispersion and requires fewer discretization points per wavelength. As a result, it can solve wave propagation problems well beyond the capability of existing solvers. Remarkably, the proposed scheme can accurately model wave propagation in 2D domains with 640 wavelengths per direction and in 3D domains with 54 wavelengths per direction on a state-of-the-art supercomputer at Lawrence Berkeley National Laboratory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.