Abstract

A fast algorithm for the boundary element method is developed to handle problems in underwater acoustics. The algorithm employs the multipole and local expansions to approximate far-field potentials, and exploits the discrete convolution nature of mapping multipole to local expansions to accelerate the potential evaluation process. The speedup in the solution process is achieved by fast Fourier transform on the multipole and local expansion coefficients on a regular grid. The method is demonstrated by a three-dimensional underwater acoustics scattering problem, and it is found to achieve accurate results with relatively low order of expansion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.