Abstract

Elastography in medical ultrasound is an imaging technique that displays information about tissue stiffness. However, elastography suffers from artefact noise that may come from two dominant sources: decorrelation error and amplitude modulation error. In order to reduce artefact and improve the quality of ultrasonic elastography, a fast bilateral filter is proposed in this study based on local histogram. The presented filter is derived from a conventional bilateral filter, and a local histogram is introduced to speed up the filter. The proposed algorithm can reduce artefact noise and, at the same time, maintain the tissue structure. Both simulation and phantom testing show that the proposed method can improve the quality of ultrasonic elastography in terms of tissue elastographic signal-to-noise ratio and elastographic contrast-to-noise ratio values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.