Abstract
A fast boundary element method for the analysis of three-dimensional solids with cracks and adhesively bonded piezoelectric patches, used as strain sensors, is presented. The piezoelectric sensors, as well as the adhesive layer, are modeled using a 3D state-space finite element approach. The piezoelectric patch model is formulated taking into account the full electro-mechanical coupling and embodying the suitable boundary conditions and it is eventually expressed in terms of the interface variables, to allow a straightforward coupling with the underlying host structure, which is modeled through a 3D dual boundary element method, for accurate analysis of cracks. The technique is computationally enhanced, in terms of memory storage and solution time, using the hierarchical format in conjunction with a GMRES solver. An original strategy retaining the advantages of the fast hierarchical solution without increasing the implementation complexity to take into account the piezoelectric patches is proposed for the solution of the final system. The presented work is a step towards modeling of structural health monitoring systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Applied Mechanics and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.