Abstract

Image reconstruction for electrical resistance tomography (ERT) is an ill-posed inverse problem. L1 regularization is used to solve the inverse problem. An effective method of Barzilai-Borwein gradient projection for sparse reconstruction (GPSR-BB) can resolve the inverse problem into bound-constrained quadratic programming and achieve a gradient projection with line search. However, it is computationally expensive to solve the problem when the data dimension is substantial. Hence, a projection method is employed and combined with the GPSR-BB algorithm to improve the real-time performance. The problem can be mainly solved in the Krylov subspace. For comparison, another L1 regularization GPSR-BB method based on the truncated singular value decomposition is also conducted. Both simulation (with 3D modeling) and experimental results demonstrate the new method’s effectiveness in reducing the computational time and improving the image quality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.