Abstract

AbstractIn this paper, a fast algorithm for Euler’s elastica functional is proposed, in which the Euler’s elastica functional is reformulated as a constrained minimization problem. Combining the augmented Lagrangian method and operator splitting techniques, the resulting saddle-point problem is solved by a serial of sub-problems. To tackle the nonlinear constraints arising in the model, a novel fixed-point-based approach is proposed so that all the sub-problems either are linear problems or have closed form solutions. Numerical examples are provided to demonstrate the performance of the proposed method.KeywordsClosed Form SolutionImage DenoisingAugmented Lagrangian MethodConstrain Minimization ProblemAugmented Lagrangian AlgorithmThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.