Abstract

In routing, finding a rectilinear Steiner minimal tree (RSMT) is a fundamental problem. Today's design often contains rectilinear obstacles, like macro cells, IP blocks, and pre-routed nets. Therefore obstacle-avoiding RSMT (OARSMT) construction becomes a very practical problem. In this paper we present a fast and stable algorithm for this problem. We use a partitioning based method and an ant colony optimization based method to construct obstacle-avoiding Steiner minimal tree (OASMT). Besides, two heuristics are proposed to do the rectilinearization and refinement to further improve wirelength. The experimental results show our algorithm achieves the best wirelength results in most of the test cases and the runtime is very small even for the larger cases each of which has both the number of terminals and the number of obstacles more than 100.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.