Abstract

Chicken embryos (CE) are an experimental model used as an important life science research tool worldwide, and then, adequate anesthetic protocols must be adopted to avoid the unjustifiable suffering of animals. Thus, our objective was to evaluate different anesthetic protocols in CEs using an easy inoculation route, the shell membrane (SM). We adopted the heart rate by pulse and the CE movements as a parameter of pain by assessing the vase in the chorioallantoic membrane (CAM) through the shell by a sensor of a multiparametric monitor. CEs were distributed into the following groups: (i) association of ketamine (5 mg/CE), midazolam (0.05 mg/CE) and morphine (0.15 mg/CE); (ii) ketamine (5 mg/CE) and xylazine (0.125 mg/CE); (iii) xylazine (0.0125 mg/CE) and morphine (0.15 mg/CE). The stress method used to test the anesthetic potential of the drugs was high temperature stimulation, keeping the CEs 10 cm from the fire of a Bussen nozzle for 30 s. In this experimental model, associations between different drugs decreased the pulse and the movement, indicating possible sedation. After treatment, the CE's submitted to the stress method had the heart rate and movements kept low in the groups ketamine-midazolam-morphine and ketamine-xylazine, while the non-drug-treated group increased heart rate. In a group treated with xylazine-morphine, the heart rate did not decrease, but the movement decreased after the stimulus. As the best results were the combinations of ketamine-midazolam-morphine and ketamine-xylazine, we recommend these associations for use in embryos in the final third of embryonic development in experimental protocols and euthanasia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.