Abstract

Hydrolysis of polysorbate in biopharmaceutical products has been ascribed to the enzymatic activity from trace levels of residual host cell proteins. In recent years, significant efforts to identify the causative enzymes typically used elaborate, material-intensive and time-consuming approaches. Therefore, the lack of fast and sensitive assays to monitor their activity remains a major bottleneck for supporting process optimization and troubleshooting activities where time and sample throughput are crucial constraints. To address this bottleneck, we developed a novel Electrochemiluminescence-based Polysorbase Activity (EPA) assay to measure hydrolytic activities in biotherapeutics throughout the drug substance manufacturing process. By combining the favorable features of an in-house designed surrogate substrate with a well-established detection platform, the method yields fast (∼36 h turnaround time) and highly sensitive readouts compatible with high-throughput testing. The assay capability for detecting substrate conversion in a precise and reliable manner was demonstrated by extensive qualification studies and by employing a number of recombinant hydrolases associated with polysorbate hydrolysis. In addition, high assay sensitivity and wide applicability were confirmed for in-process pool samples of three different antibody products by performing a head-to-head comparison between this method and an established liquid chromatography - mass spectrometry based assay for the quantification of free fatty acids. Overall, our results suggest that this new approach is well-suited to resolve differences in hydrolytic activity through all stages of purification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.