Abstract

The application of 3D–2D image registration can be enormously helpful for different clinical purposes, such as image-guided surgery and the kinematic analysis of bones in knee and ankle joints. A limitation of this approach is the need to recalculate the voxel values in the 3D volume for every iteration of the registration procedure prior to generating a digitally reconstructed radiograph. In this paper we propose a new multi-phase 3D–2D image registration algorithm which uses partial 3D volumes to estimate out-of-plane rotations. In our proposed algorithm, only one full 3D update is used to generate a 2D projection during the registration procedure. Experimental results show that our proposed method can provide a registration accuracy similar to the commonly used approach which employs 3D updates at every iteration. As a result of reducing the number of 3D updates, the proposed approach reduces the time required to carry out the registration by a factor of 10–20 without any accompanying loss of registration accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.