Abstract

AbstractThis work deals with the development of a fast three‐dimensional numerical strategy for the simulation of viscous fluid flow in complex mixing systems. The proposed method is based on a distributed Lagrange multiplier fictitious domain method and the use of the low‐cost MINI finite element. Contrary to the previous fictitious domain method developed by our group a few years ago, the underlying partial differential equations are solved here in a coupled manner using a consistent penalty technique. The method is discussed in detail and its precision is assessed by means of experimental data in the case of an agitated vessel. A comparison made with our existing fictitious domain method and its decoupled Uzawa‐based solver clearly shows the advantages of resorting to the MINI finite element and fully coupled solution strategy. The new technique is then applied to the simulation of the flow of a Newtonian viscous fluid in a three‐blade planetary mixer in the context of the production of solid propellants. Copyright © 2008 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.