Abstract
Ellipse is one of the most common features that appears in images. Over years in research, real-timing and robustness have been two very challenging problems aspects of ellipse detection. Aiming to tackle them both, we propose an ellipse detection algorithm based on pseudo-random sample consensus (PRANSAC). In PRANSAC we improve a contour-based ellipse detection algorithm (CBED), which was presented in our previous work. In addition, the parallel thinning algorithm is employed to eliminate useless feature points, which increases the time efficiency of our detection algorithm. In order to further speed up, a 3-point ellipse fitting method is introduced. In terms of robustness, a “robust candidate sequence” is proposed to improve the robustness performance of our detection algorithm. Compared with the state-of-the-art ellipse detection algorithms, experimental results based on real application images show that significant improvements in time efficiency and performance robustness of the proposed algorithm have been achieved.KeywordsEllipse DetectionParallel ThinningRobust Candidate SequencePRANSAC
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.