Abstract

The objective of this study was to evaluate the efficiency of a promising solid phase microextraction technique, μSPEed, in the analysis of selected phenolic compounds from teas by ultrahigh performance liquid chromatography with photodiode array detection (μSPEed/UHPLC-PDA). The innovative μSPEed configuration uses 3-μm sorbent particles tightly packed in a disposable needle equipped with a pressure-driven valve to withdraw samples in a single direction. The system was operated by the electronic pipette eVol® and different parameters influencing the extraction efficiency, as the nature of sorbent, pH, loading and elution conditions, and solvents were optimized. The best extracting conditions were obtained by loading twice 100μL of tea samples through the PS/DVB-RP sorbent and eluting with 50μL of acidified MeOH 95%. The following chromatographic separation was carried out in an Acquity C18 BEH capillary column using a gradient of 0.1% FA and acetonitrile. The optimized μSPEed/UHPLC-PDA methodology is selective and specific and was properly validated for 8 phenolic compounds widely reported in different teas. Overall, an excellent analytical performance was obtained in the 0.2–20μg/L linear dynamic range (LDR), with very low limits of detection (LODs) and quantification (LOQs), ranging between 3.5–16.8ng/mL and 10.6–50.6ng/mL, respectively, high recoveries (89.3–103.3%), good precision (RSD<5%) and negligible matrix effect. The methodology was used to assess the target polyphenols concentration in several tea samples. Rutin and quercetin-3-glucoside were the most abundant phenolics in all tea samples analysed and, with exception of naringenin and cinnamic acid, which are present in high amounts in the investigated citric teas, remain phenolic compounds are present in trace levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.