Abstract

The synthesis and surface modification of gold nanorods (GNRs) is one of the most important and basic issues in nanoscience. Most of the widely investigated GNRs are coated with a cetyltrimethylammonium bromide(CTAB) bilayer. Here, a highly efficient method is proposed to replace CTAB from the surface of GNRs with a bifunctional 11-mercaptoundecanoic acid in order to decrease the possible toxicity caused by CTAB. This ligand exchange is achieved in a biphasic mixture of an aqueous solution and a water-immiscible ionic liquid (IL), [BMIM][Tf2 N]. That is, by mixing IL, mercaptoundecanoic acid (MUA)/IL (200 × 10-3 m) and a concentrated aqueous solution of GNRs together, followed by vortex stirring for 90 s, CTAB-capped GNRs with varying aspect ratios can be turned into corresponding MUA-capped GNRs with the same aspect ratio. Furthermore, the formed MUA-capped GNRs can be obtained in a large quantity and stored as powders for easy use. The MUA-capped GNRs with improved biocompatibility and colloidal stability are well suited for further biological functionalization and potential applications. This IL-assisted ligand exchange can reverse the surface charge, enhance the stability of GNRs, and suppress its cytotoxicity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call