Abstract
Synthetic cannabinoids are a group of psychoactive compounds that mimic the effects of Δ9-tetrahydrocannabinol, the primary psychoactive constituent of marijuana (Cannabis sativa L). The Drug Enforcement Administration has classified many of the most common cannabinoids as Schedule 1 controlled substances. As a result, several novel synthetic cannabinoid series have emerged in the illicit drug market, including PINACA, FUBINACA, PB-22, AKB-48 and multiple derivatives of these compounds. Our laboratory developed and validated an analytical method for the analysis 32 synthetic cannabinoid metabolites in urine samples. Included in this method are metabolites that are constituents of the new generation of synthetic cannabinoids. Following enzymatic hydrolysis, target analytes were recovered by liquid-liquid extraction utilizing 1-chlorobutane:isopropyl alcohol (70:30) as the organic ratio. Chromatographic separation and detection was achieved using an Agilent Technologies 1290 liquid chromatograph coupled to a 6460-triple quadrupole mass spectrometer with a Jetstream electrospray source. Linearity for all analytes was established along the range of 0.5-200 ng/mL. Both intraday and interday accuracy and precision data were all within acceptable limits, ±20% error and ±15% relative standard deviation, respectively. Recovery ranged from 48% to 104%. This method has shown to be selective and specific, providing no evidence of interference or carryover concerns. Finally, 11 distinct synthetic cannabinoids were detected in 23 of 25 donor samples analyzed with the method. The data presented here represents a validated liquid chromatography tandem mass spectrometry method to accurately identify and quantitate synthetic cannabinoid metabolites in urine samples, incorporating new generation derivatives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.