Abstract

We use a series-expansion approach and an operator framework to derive a new, fast, and accurate Fourier algorithm for iterative tomographic reconstruction. This algorithm is applicable for parallel-ray projections collected at a finite number of arbitrary view angles and radially sampled at a rate high enough that aliasing errors are small. The conjugate gradient (CG) algorithm is used to minimize a regularized, spectrally weighted least-squares criterion, and we prove that the main step in each iteration is equivalent to a 2-D discrete convolution, which can be cheaply and exactly implemented via the fast Fourier transform (FFT). The proposed algorithm requires O(N(2)logN) floating-point operations per iteration to reconstruct an NxN image from P view angles, as compared to O(N (2)P) floating-point operations per iteration for iterative convolution-backprojection algorithms or general algebraic algorithms that are based on a matrix formulation of the tomography problem. Numerical examples using simulated data demonstrate the effectiveness of the algorithm for sparse- and limited-angle tomography under realistic sampling scenarios. Although the proposed algorithm cannot explicitly account for noise with nonstationary statistics, additional simulations demonstrate that for low to moderate levels of nonstationary noise, the quality of reconstruction is almost unaffected by assuming that the noise is stationary.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.