Abstract

<p>Autonomous driving has spurred the development of sensor fusion techniques, which combine data from multiple sensors to improve system performance. In particular, a localization system based on sensor fusion, such as Visual Simultaneous Localization and Mapping (VSLAM), plays a crucial role in environment perception and serves as the foundation for decision-making and motion control in intelligent vehicles. The accuracy of extrinsic calibration parameters between the camera and IMU is of utmost importance for precise positioning in VSLAM systems. However, existing calibration methods are often time-consuming, rely on complex optimization techniques, and are sensitive to noise and outliers, leading to potential degradation in system performance. To address these challenges, this paper presents a fast and accurate camera-IMU calibration method based on space coordinate transformation constraints and SVD (Singular Value Decomposition) tricks. The method involves constructing constraint equations by ensuring the equality of rotation and transformation matrices between camera frames and IMU coordinates at different time instances. Subsequently, the external parameters of the camera-IMU system are solved using quaternion transformation and SVD techniques. To validate the proposed method, experiments were conducted using the ROS (Robot Operating System) platform, where camera images and velocity, acceleration, and angular velocity data from the IMU were recorded in a ROS bag file. The results demonstrate that the proposed method achieves reliable camera-IMU calibration parameters, requiring less tuning time and exhibiting reduced uncertainty.</p>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call