Abstract

AbstractA class of negative matrices including Vandermonde‐like matrices tends to be extremely ill‐conditioned, and linear systems associated with this class of matrices appear in the polynomial interpolation problems. In this article, we present a fast and accurate algorithm with complexity to solve the linear systems whose coefficient matrices belong to the class of negative matrix. We show that the inverse of any such matrix is generated in a subtraction‐free manner. Consequently, the solutions of linear systems associated with the class of negative matrix are accurately determined by parameterization matrices of coefficient matrices, and a pleasantly componentwise forward error is provided to illustrate that each component of the solution is computed to high accuracy. Numerical experiments are performed to confirm the claimed high accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.