Abstract

A new algorithm is presented for the calculation of atomic properties, in the sense of the quantum theory of atoms in molecules. This new method, named QTREE, applies to solid-state densities and allows the computation of the atomic properties of all the atoms in the crystal in seconds to minutes. The basis of the method is the recursive subdivision of a symmetry-reduced wedge of the Wigner-Seitz cell, which in turn is expressed as a union of tetrahedra, plus the use of β-spheres to improve the performance. A considerable speedup is thus achieved compared with traditional quadrature-based schemes, justified by the poor performance of the latter because of the particular features of atomic basins in solids. QTREE can use both analytical or interpolated densities, calculates all the atomic properties available, and converges to the correct values in the limit of infinite precision. Several gradient path tracing and integration techniques are tested. Basin volumes and charges for a selected set of 11 crystals are determined as a test of the new method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.