Abstract

Ill-posed linear inverse problems (ILIP), such as restoration and reconstruction, are a core topic of signal/image processing. A standard approach to deal with ILIP uses a constrained optimization problem, where a regularization function is minimized under the constraint that the solution explains the observations sufficiently well. The regularizer and constraint are usually convex; however, several particular features of these problems (huge dimensionality, non-smoothness) preclude the use of off-the-shelf optimization tools and have stimulated much research. In this paper, we propose a new efficient algorithm to handle one class of constrained problems (known as basis pursuit denoising) tailored to image recovery applications. The proposed algorithm, which belongs to the category of augmented Lagrangian methods, can be used to deal with a variety of imaging ILIP, including deconvolution and reconstruction from compressive observations (such as MRI). Experiments testify for the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.