Abstract

The standard algorithm for testing reducibility of a trinomial of prime degree r over GF(2) requires 2r + O(1) bits of memory. We describe a new algorithm which requires only 3r/2+O(1) bits of memory and significantly fewer memory references and bit-operations than the standard algorithm.If 2r - 1 is a Mersenne prime, then an irreducible trinomial of degree r is necessarily primitive. We give primitive trinomials for the Mersenne exponents r = 756839, 859433, and 3021377. The results for r = 859433 extend and correct some computations of Kumada et al. The two results for r = 3021377 are primitive trinomials of the highest known degree.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.